
Com~,uer Science:\

AD-A281 255

using secure coprocessors

Bennet Yee
May 1994

~~
CMU-CS-94-1 49

ET
CTE

koIo

0ý 94-20658 V=QUA1'lmBPBCTND

94 7 6 100

0

Using Secure Coprocessors

Bennet Yee
May 1994

CMU-CS-94-149

School of Computer Science
Carnegie Mellor University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Thesis Committee:
Doug Tygar, Chair

Rick Rashid L
M. Satyanarayanan ., "LE'E" fm ,

Steve White, IBM Research JUL 0 194

Copyright @ 1994 Bennet Yee G :

This research was sponsored in part by the Advanced Research Projects Agency under contract number
F19628-93-C-0193; the Avionics Laboratori,-. Wright Research and Development Center, Aeronautical
Systems Division (AFSC), U. S. Air For -, \vngnt-Patterson AFB, OH 45431-6543 under Contract F33615-
90-C-1465, ARPA Order No. 7597; IBM; Motorola; the National Science Foundation under Presidential
Young Investigator Grant CCR-8858087; TRW; and the U. S. Postal Service.

The views and conclusions in this document are those of the authors and do not necessarily represent the
official policies or endorsements of any of the research sponsors.

School of Computer Science

DOCTORAL THESIS
in the field of

Computer Science

Using Secure Coprocessors

BENNET YEE Acceslon For
NTIS CRA&I
DTIC TAB
Unannounced 0

Submitted in Partial Fulfillment of the Requirements Justification

for the Degree of Doctor of Philosophy By

Distribution I

Availability Codes
Avail and I or

Dist special

ACCEPTED:1

THESIS COMMITTEE CHAIR DATE

DEPARTMENT HEAD DATE

"APPROVED:

DEAN DATE

Abstract

How do we build distributed systems that are secure? Cryptographic techniques can be used
to secure the communications between physically separated systems, but this is not enough:
we must be able to guarantee the privacy of the cryptographic keys and the integrity of
the cryptographic functions, in addition to the integrity of the security kernel and access
control databases we have on the machines. Physical security is a central assumption
upon which secure distributed systems are built; without this foundation even the best
cryptosystem or the most secure kernel will crumble. In this thesis, I address the distributed
security problem by proposing the addition of a small, physically secure hardware module,
a secure coprocessor, to standard workstations and PCs. My central axiom is that secure
coprocessors are able to maintain the privacy of the data they process.

This thesis attacks the distributed security problem from multiple sides. First, I an-
alyze the security properties of existing system components, both at the hardware and
software level. Second, I demonstrate how physical security requirements may be iso-
lated to the secure coprocessor, and showed how security properties may be bootstrapped
using cryptographic techniques from this central nucleus of security within a combined
hardware/software architecture. Such isolation has practical advantages: the nucleus of
security-relevant modules provide additional separation of concern between functional re-
quirements and security requirement, and the security modules are more centralized and
their properties more easily scrutinized. Third, I demonstrate the feasibility of the secure co-
processor approach, and report on my implementation of this combined architecture on top
of prototype hardware. Fourth, I design, analyze, implement, and measure performance of
cryptographic protocols with super-exponential security for zero-knowledge authentication
and key exchange. These protocols are suitable for use in security critical environments.
Last, I show how secure coprocessors may be used in a fault-tolerant manner while still
maintaining their strong privacy guarantees.

Contents

1 Introduction and Motivation 1

2 Secure Coprocessor Model 5
2.1 Physical Assumptions for Security 5
2.2 Limitations of Model 6
2.3 Potential Platforms 7
2.4 Security Partitions 8
2.5 Machine-User Authentication 10
2.6 Previous Work 11

3 Applications 13
3.1 Host Integrity Check 13

3.1.1 Host Integrity with Secure Coprocessors 13
3.1.2 Absolute Limits 15
3.1.3 Previous Work 16

3.2 Audit Trails 19
3.3 Copy Protection 19

3.3.1 Copy Protection with Secure Coprocessors, 20
3.3.2 Previous Work 22

3.4 Electronic Currency 22
3.4.1 Electronic Money Models 22
3.4.2 Previous Work 26

3.5 Secure Postage 28
3.5.1 Cryptographic Stamps 29
3.5.2 Software Postage Meters 31

4 System Architecture 35
4.1 Abstract System Architecture 35

4.1.1 Operational Requirements 35
4.1.2 Secure Coprocessor Architecture 36
4.1.3 Crypto-paging and Sealing 37
4.1.4 Secure Coprocessor Softw"r 37
4.1.5 Key Management 38

4.2 Concrete System Architecture 39
4.2.1 System Hardware 39
4.2.2 Host Kernel 43

4.2.3 Coprocessor Kernel 47

5 Cryptographic Algorithms/Protocols 53
5.1 Description of Algorithms 53

5.1.1 Key Exchange 54
5.1.2 Authentication 56
5.1.3 Merged Authentication and Secret Agreement 58
5.1.4 Practical Authentication and Secret Agreement 60
5.1.5 Fingerprints 61

5.2 Analysis of Algorithms 62
5.2.1 Key Exchange 62
5.2.2 Authentication 62
5.2.3 Merged Authentication and Secret Agreement 64
5.2.4 Practical Authentication and Secret Agreement 65
5.2.5 Fingerprints 66

6 Bootstrap and Maintenance 71
6.1 Simple Secure and Bootstrap 72
6.2 Flexible Secure Bootstrap and Maintenance 72
6.3 Hardware-level Maintenance 73
6.4 Tolerating Hardware Faults 74

7 Verification and Potential Failures 77
7.1 Hardware Verification 77
7.2 System Software Verification 78
7.3 Failure Modes 79
7.4 Previous Work 80

8 Perlrmance 81
8.1 Cryptographic Algorithms 81
8.2 Crypto-Paging 83

9 Conclusion and Future Work 85

List of Figures

3.1 Copy-Protected Software Distribution 21
3.2 Postage Meter Indicia 28
3.3 PDF417 encoding of Abraham Lincoln's Gettysburg Address 30

4.1 Dyad Prototype Hardware 40
4.2 DES Engine Data Paths 41
4.3 Host Software Architecture 44

5.1 Fingerprint residue calculation 67
5.2 Fingerprint calculation (C code) 68

iii

List of Tables

2.1 Subsystem Vulnerabilities Without Cryptographic Techniques 9
2.2 Subsystem Vulnerabilities With Cryptographic Techniques 9

8.1 Cryptographic Algorithms Run Time 82

iv

Acknowledgements

I would like to thank Doug Tygar, without whom this thesis would not have been possible.
I would also like to thank my parents, without whom I would not have been possible.

I was fortunate to have a conscientious and supportive thesis committee: thanks to Rick
Rashid for his helpful advice (and his colorful metaphors); thanks to Steve White and his
crew at IBM Research for their insights into secure coprocessors (and for their generous
hardware grant); thanks to Satya for systems advice.

Special thanks go to Michael Rabin, whose ideas inspired my protocol work. I am also
indebted to Alfred Spector, who helped Doug and I with Strongbox, the predecessor to
Dyad. Steve Guattery was generous with his time in helping with the proof reading. (All
rerors remaining are mine, of course.)

Thanks to Wayne Wilkerson and his staff at the U. S. Postal Service for many discussions
related to cryptographic stamps.

Thanks to Symbol Technologies Inc for figure 3.3.

V

vi

Chapter 1

Introduction and Motivation

Is privacy the first roadkill on the Information Superhighway? I Will super-
highwaymen way lay new settlers to this electronic frontier?

While these questions may be too steeped in metaphor, they raise very real concerns.
The National Information Infrastructure (Nil) [32] grand vision would have remote com-
puters working harmoniously together, communicating via an "electronic superhighway,"
providing new informational goods and services for all.

Unfortunately, many promising NIl applications demand difficult-to-achieve distributed
security properties. Electronic commerce applications such as electronic stock brokerage,
pay-per-use, and metered services have strict requirements for authorization and confi-
dentiality - providing trustworthy authorization requires user authentication; providing
confidentiality and privacy of communications requires end-to-end encryption. As a result
of the need for encryption and authentication, our systems must be able to maintain the
secrecy of the keys used for encrypting communications, the secrecy of the user-supplied
authentication data (e.g., passwords), and the integrity of the authentication database against
which the user-supplied authentication data is checked. Furthermore, hand in hand with
the need for privacy is the need for system integrity: without the integrity of the system
software that mediates access to protected objects or the integrity of the access control
database, no system can provide any sort of privacy guarantee.

Can strong privacy and integrity properties be achieved on real, distributed systems'?
The most common computing environments today on college campuses and workplaces

are open computer clusters and workstations in offices, all connected by networks. Physical
security is rarely realizable in these environments: neither computer clusters nor offices
are secure against casual intruders,2 let alone the determined expert. Even if office locks
were safe, the physical media for our local networks are often but a ceiling tile away -

any hacker who knows her raw bits can figure out how to tap into a local network using a
PC. To make matters worse, for many security applications we must be able to protect our
systems against the occasional untrustworthy user as well as intruders from the outside.

'The source of this quote is unclear; one paraphrased version appeared in print, as "If privacy isn't already

the first roadkill along the information superhighway, then it's about to be" [551, and other variants of this
have appeared in diverse locations.
2The knowledge of how to pick locks is widespread; many well-trained engineers can pick office locks [961.

1

Standard textbook treatments of computer security assert that physical security is a
necessary precondition to achieving overall system security. While this may have been a
requirement that was readily realizable for yesterday's computer centers with their large
mainframes, it is clearly not a realistic expectation for today's PCs and workstations: their
physical hardware is easily accessible by both authorized users and malicious attackers
alike. With complete physical access, the adversaries can mount various attacks: they can
copy the hard disk's contents for offline analysis; replace critical system programs with
trojan horse versions; replace various hardware componer:.s to bypass logical safeguards,
etc.

By making the processing power of workstations widely and easily available, we have
made the entire system hardware accessible to interlopers. Without a foundation of physical
security to build on, logical security guarantees crumble. How can we remedy this?

Researchers have realized the vulnerability of network wires and other communication
media. They have brought tools from cryptography to bear on the problem of insecure
communication networks, leading to a variety of key exchange and authentication protocols
[25, 27, 30, 59, 67, 78, 80, 93, 981 for use with end-to-end encryption, providing privacy
for network communications. Others have noted the vulnerability of workstations and their
disk storage to physical attacks, and have developed a variety of secret sharing algorithms
for protecting data from isolated attacks [39, 75, 861. Tools from the field of consensus
protocols can be applied as well. Unfortunately, all of these techn'ques, while powerful,
still assume some measure of physical security, a property unavailable on conventional
workstations and PCs. The gap between reality and the physical security assumption must
be closed before these techniques can be implemented in a believable fashion.

Can we provide the necessary physical security to PCs and workstations without crip-
pling their accessibility? Can real, secure electronic commerce applications be built in a
networked, distributed computing environment? I argue that the answer to these questions
is yes, and I have built a software/hardware system called Dyad that demonstrates my ideas.

In this thesis, I analyze the distributed security problem not just from the traditional
cryptographic protocol viewpoint but also from the viewpoint of a hardware/software sys-
tem designer. I address the need for physical security and show how we can obtain
overall system security by bootstrapping from a limited amount of physical security that
is achievable for workstation/PC platforms - by incorporating a secure coprocessor in a
tamper-resistant module. This secure coprocessor may be realized as a circuit board on the
system bus, a PCMCIA 3 card, or an integrated chip; in my Dyad system, it is realized by
the Citadel prototype from IBM, a board-level secure coprocessor system.

I analyze the natural security properties inherent in secure coprocessor enhanced com-
puters, and demonstrate how security guarantees can be strengthened by bootstrapping
security using cryptographic techniques. Building on this analysis, I develop a combined
software/hardware system architecture, providing a firm foundation upon which applica-
tions with stringent security requirements can be built. I describe the design of the Citadel

3Personal Computer Memory Card International Association

2

prototype secure coprocessor hardware, the Mach [2] kernel port running on top of it, the
resultant system integration with the host platform, the security applications running on top
of the secure coprocessor, and new, highly secure cryptographic protocols for key exchange
and zero-knowledge authentication.4

By attacking the distributed security problem from all sides, I show that it is eminently
feasible to build highly secure distributed systems, with bootstrapped security properties
derived from physical security.

The next chapter discusses in detail what is meant by the term secure coprocessor and
the basic security properties that secure coprocessors must possess. Chapter 3 outlines
five applications that are impossible without the security properties provided by secure
coprocessors. Chapter 4 describes the combined hardware/software system architecture of
a secure coprocessor-enhanced host. I consider the basic operational requirements induced
by the demands of security applications and then describe the actual system architecture as
implemented in the Dyad secure coprocessor system prototype. Chapter 5 describes my
new cryptographic protocols, and gives an in-depth analysis of their cryptographic strength.
Chapter 6 addresses the security issues present when initializing a secure coprocessor, and
presents techniques to make a secure coprocessor system fault tolerant. Additionally,
I demonstrate techniques where proactive fault diagnostics may allow some classes of
hardware faults to be detected and permit the replacement of a malfunctioning secure
coprocessor. Chapter 7 shows how both the secure coprocessor hardware and system
software may be verified, and examines the consequences of system privacy breaches.
Chapter 8 gives performance tigures for the cryptographic algorithms, the overhead incurred
by crypto-paging, and the raw DMA transfer times for our prototype system. In chapter 9,
I propose challenges for future developers of secure coprocessors.

'Some of this research was joint work: the design of Dyad, the secure applications, and the new protocols
was done with Doug Tygar of CMU. The basic secure coprocessor model was developed with White, Palmer.
and Tygar. The Citadel system was designed by Steve Weingart, Steve White, and Elaine Palmer of IBM; I
debugged Citadel and redesigned parts of it.

3

I

4

Chapter 2

Secure Coprocessor Model

A secure coprocessor is a hardware module containing (1) a CPU, (2) bootstrap ROM,
and (3) secure non-volatile memory. This hardware module is physically shielded from
penetration, and the I/O interface to the module is the only way to access the internal state
of the module. (Examples of packaging technology are discussed later in section 2.3.) This
hardware module can store cryptographic keys without risk of release. More generally, the
CPU can perform arbitrary computations (under control of the operating system); thus the
hardware module, when added to a computer, becomes a true coprocessor. Often, the secure
coprocessor will contain special purpose hardware in addition to the CPU and memory; for
example, high speed encryption/decryption hardware may be used.

Secure coprocessors must be packaged so that physical attempts to gain access to the
internal state of the coprocessor will result in resetting the state of the secure coprocessor
(i.e., erasure of the secure non-volatile memory contents and CPU registers). An intruder
might be able to break into a secure coprocessor and see how it is constructed; the intruder
cannot, however, learn or change the internal state of the secure coprocessor except through
normal I/O channels or by forcibly resetting the entire secure coprocessor. The guarantees
about the privacy and integrity of the secure non-volatile memory provide the foundations
needed to build distributed security systems.

With a firm security foundation available in the form of a secure coprocessor, greater
security can be achieved for the host computer.

2.1. Physical Assumptions for Security

All security systems rely on a nucleus of assumptions. For example, it is often assumed that
encryption systems are resistant to cryptanalysis. Similarly, I take as axiomatic that secure
coprocessors provide private and tamper-proof memory and processing. These assumptions
may be falsified: for example, attackers may exhaustively search cryptographic key spaces.
Similarly, it may be possible to falsify my physical security axiom by expending enormous
resources (possibly feasible for very large corporations or goverr-,,,-, 'gencies). I rely
on a physical work-factor argument to justify my axiom, similar in spirit to intractability
assumptions of cryptography. My secure coprocessor model does not depend on the partic-
ular technology used to satisfy the work-factor assumption. Just as cryptographic schemes
may be scaled or changed to increase the resources required to penetrate a cryptographic

5

system, current security packaging techniques may be scaled or changed to increase the
work-factor necessary to successfully bypass the secure coprocessor protections.

Chapter 3 shows how to build secure subsystems running partially on a secure copro-
cessor.

2.2. Limitations of Model

Confining all computation within secure coprocessors would ideally suit our security needs,
but in reality we cannot - and should not - convert all of our processors into secure
coprocessors. There are two main reasons: first, the inherent limitations of physical security
techniques for packaging circuits; and second, the need to keep the system maintainable.
Fortunately, as we shall see in chapter 3, we do not need to physically shield the entire
computer. It suffices to physically protect only a portion of the computer.

If the secure coprocessor is sealed in epoxy or a similar mateial heat dissipation require-
ments limit us to one or two printed circuit boards. Future developments may eventually
relax this and allow us to make more of the solid-state components of a multiprocessor
workstation physically secure, perhaps an entire card cage; however, the security problems
of external mass storage and networks will in all likelihood remain constant.

While it may be possible to secure package an entire multiprocessor, it is likely to be
impractical and is unnecessary besides. If we can obtain similar functionalities by placing
the security concerns within a single coprocessor, we can avoid the cost and maintenance
problems of making multiple processors and all memory secure.

Easy maintenance requires modular design. Once a hardware module is encapsulated
in a physically secure package, disassembling the module to fix or replace some compo-
nent will probably be impossible. Wholesale board swapping is a standard maintenance /
hardware debugging technique, but defective boards are normally returned for repairs; with
physical encapsulation, this will no longer be possible, thus driving up costs. Moreover,
packaging considerations and the extra hardware development time imply that secure co-
processor's technology may lag behind the host system's technology - perhaps by one
generation. The right balance between physically shielded and unshielded components
depends on the class of intended applications. For many applications, only a small portion
of the system must be protected.

What about system-level recovery after a hardware fault? if f,, Lets are kept only within
a single secure coprocessor, having to replace a faulty unit with a different one due to a will
lead to data loss. After we replace a broken coprocessor with a good one, will we be able
to continue running our applirations? Section 6.4 gives techniques for periodic checkup
testing and fault tolerant operation of secure coprocessors.

6

2.3. Potential Platforms

Several physically secure processors exist. This section describes some of these plat-
forms, giving the types of attacks these systems resist, and system limitations arising from
packaging technology.

The MABYSS [103] and Citadel [105] systems employ board-level protection. The
systems include a standard microprocessor (Citadel uses an Intel 80386), some non-volatile
(battery backed) RAM, and special sensing circuitry to detect intrusion into a protective
casing around the circuit board. Additionally, Citadel includes fast (annroximately 30
MBytes/sec) DES encryption hardware. The security circuitry erases nc itile memory
before attackers can penetrate far enough to disable the sensors or read i. ,ry contents.

Physical security mechanisms must protect against many types of physical attacks.
In the /.ABYSS and Citadel systems, it is assumed that intruders must be able to probe
through a straight hole of at least one millimeter in diameter. to penetrate the system (probe
pin voltages, destroy sensing circuitry, etc). To prevent direct intrusion, these systems
incorporate sensors consisting of fine (40 gauge) nichrome wire and low power sensing
circuits powered by a long-lived battery. The wires are loosely but densely wrapped in
many layers around the circuit board and the entire assembly is then dipped in epoxy. The
loose and dense wrapping makes the exact position of the wires in the epoxy unpredictable
to an adversary. The sensing electronics detect open circuits or short circuits in the wires
and erase non-volatile memory if intrusion is attempted. Physical intrusion by mechanical
means (e.g., drilling) cannot penetrate the epoxy without breaking one of these wires.

Another attack is to dissolve the epoxy with solvents to expose the sensor wires. To
block this attack, the epoxy is designed to be chemically "harder" than the sensor wires.
Solvents will destroy at least one of the wires - and thus create an open-circuit - before
the intruder can bypass the potting material and access the circuit board.

Yet another attack uses low temperatures. Semiconductor memories retain state at very
low temperatures even without power, so an attacker could freeze the secure coprocessor
to disable the battery and then extract memory contents. The systems contain temperature
sensors which trigger erasure of secrets before the temperature drops below the critical
level. (The system must have enough thermal mass to prevent rapid freezing - by being
dipped into liquid nitrogen or helium, for example - and this places some limitations on
the minimum size of the system. This has important implications for secure smartcard
designers.)

The next step in sophistication is the high-powered laser attack. The idea is to use a
high powered (ultraviolet) laser to cut through the epoxy and disable the sensing circuitry
before it has a chance to react. To protect against such an attack, alumina or silica is added,
causing the epoxy to absorb ultraviolet light. The generated heat creates mechanical stress,
causing the sensing wires to break.

Instead of the board-level approach, physical security can be provided for smaller,
chip-level packages. Clipper and Capstone, the NSA's proposed DES replacements [4, 99,
100] are special purpose encryption chips. These integrated circuit chips are reportedly

7

designed to destroy key information (and perhaps other important encryption parameters
- the encryption algorithm, Skipjack, is supposed to be secret as well) when attempts are
made to open the integrated circuit chips' packaging. Similarly, the iPower [581 encryption
chip by National Semiconductor has tamper detection machinery which causes chemicals
to be released to erase secure data. The quality of protection and the types of attacks which
these system can withstand have not been published.

Smartcards are another approach to physically secure coprocessing [541. A smartcard
is a portable, super-small microcomputer. Sensing circuitry is less critical for many ap-
plications (e.g., authentication, storage of the user's cryptographic keys), since physical
security is maintained by the virtue of its portability. Users carry their smartcards with
them at all times and provide the necessary physical security. Authentication techniques
for smartcards have been widely studied [1, 541. Additionally, newer smartcard designs
such as some GEMPIus or Mondex cards [35] feature limited physical security protection,
providing a true (simple) secure coprocessor.

The technology envelope defined by these platforms and their implementation parame-
ters constrains the limits of secure coprocessor algorithms. As the computation power and
physical protection mechanisms for mobile computers and smartcards evolve, this envelope
will grow.

2.4. Security Partitions

System components of networked hosts may be classified by their vulnerabilities to various
attacks and placed within "native" security partitions. These natural security partitions
contain system components that provide common security guarantees. Secure coprocessors
add a new system component with fewer inherent vulnerabilities and create a new security
partition; cryptographic techniques reduce some of these vulnerabilities and enhance secu-
rity. For example, using a secure coprocessor to boot a system and ensure that the correct
operating system is running provides privacy and integrity guarantees on memory not oth-
erwise possible. Public workstations can employ secure coprocessors and cryptography to
guarantee the privacy of disk storage and provide integrity checks.

Table 2.1 shows the vulnerabilities of various types of memory when no cryptographic
techniques are used. Memory within a secure coprocessor is protected against physical
access. With the proper protection mechanisms, data stored within a secure coprocessor
can be neither read nor tampered with. A working secure coprocessor can ensure that
the operating system was booted correctly (see section 3. 1) and that the host RAM is
protected against unauthorized logical access.5 It is not, however, well protected against
physical access - we can connect logic analyzers to the memory bus and listen passively

51 assume that the operating system provides protected address spaces. Paging is performed on either a remote
disk via encrypted network communication (see section 4.1.3 below) or a local disk which is immune to all
but physical attacks. To protect against physical attacks for the latter case, we may need to encrypt the data
anyway or ensure that we can erase the paging data from the disk before shutting down.

8

Subsystem Vulnerabilities
Availability Integrity/Privacy

Secure Coprocessor None None
Host RAM Online Physical Online Physical

Access Access
Secondary Store Offline Physical Offline Physical

Access Access
Network Online Remote Online Remote Access
(communication) Access Offline Analysis

Table 2.1 Subsystem Vulnerabilities Without Cryptographic Techniques

to memory traffic, or use an in-circuit emulator to replace the host processor and force the
host to periodically disclose the host system's RAM contents. Furthermore, it is possible
to use multi-ported memory to remotely monitor RAM. (While it may be impractical to do
this in a way invisible to users, this line of attack can not be entirely ruled out.) Secondary
storage may be more easily attacked than RAM since the data can be modified offline; to do
this, however, an attacker must gain physical access to the disk. Network communication
is completely vulnerable to online eavesdropping and offline analysis, as well as online
message tampering. Since networks are used for remote communication, it is clear that
these attacks may be performed remotely.

Subsystem Vuilnerabilities

Availability V neriti /Privacy
Secure Coprocessor None None
Host RAM Online Physical Host Processor

Access Data
Secondary Store Offline Physical None

Access
Network Online Remote None
(communication) Access

Table 2.2 ',:bsystem Vulnerabilities With Cryptographic Techniques

As table 2.2 illustrates, encryption can strengthen privacy guarantees. Data modifica-
tion vulnerabilities still exist; however, tampering can be detected by using cryptographic

9

checksums as long as the checksum values are stored in tamper-proof memory. Note that
the privacy level is a function of the subsystem component using the data. If host RAM
data is processed by the host CPU, moving the data to the secure coprocessor for encryption
is either useless or prohibitively expensive [29, 611 - the data must appear in plaintext
form to the host CPU and is vulnerable to online attacks. However, if the host RAM data is
serving as backing store for secure coprocessor data pages (see section 4.1.3), encryption is
appropriate. Similarly, encrypting the secondary store via the host CPU protects that data
against offline privacy loss but not online attacks, whereas encrypting that data within the
secure coprocessor protects that data against online privacy attacks as well, as long as that
data need not ever appear in plaintext form in the host memory.

For example, if we wish to send and read encrypted electronic mail, encryption and
decryption can be performed by the host processor since the data must reside within both
hosts for the sender to compose it and for the receiver to read it. But, the exchange of the
encryption key used for the message should involve secure coprocessor computation: key
exchange should use secrets that must remain within the secure coprocessor. 6

2.5. Machine-User Authentication

How can we authenticate users to machines and vice versa? One solution is smartcards (see
section 2.3) with zero knowledge protocols (see secton 5.1.2).

Another way to verify the presense of a secure coprocessor is to ask a third-party entity
- such as a physically sealed third-party computer - to check the machine's identity for
the user. This service can also be provided by normal network servers machines such as
file servers. Remote services must be difficult to emulate by attackers. Users will notice
the absence of these services to detect that something is amiss. This necessarily implies
that these remote services must be available before the users authenticate to the system.

The secure coprocessor must be present for the remote services to work correctly.
Evidence that these services work can be conveyed to the user through a secure display
that is part of the secure coprocessor. If no such display is available, care must be taken to
verify that the connection to the remote, trusted third-party server is not being simulated by
an attacker. To circumvent this attack, we must be able to reboot the workstation and rely
on the local secure coprocessor to perform host system integrity checks.

Unlike authentication protocols reliant on central authentication servers [81, 80, 931,
this machine-user authentication happens once, at boot time or session start time. Users
may be confident that the workstation contains an authentic secure coprocessor if access
to any normal remote service can be obtained. To successfully authenticate to obtain the
service, attackers must either break the authentication protocol, break the physical security

6This is true even if public key cryptography is used. Public key encryption requires no secrets and may
be performed in the host; signing the message, however, requires the use of secret values and thus must be
performed within the secure coprocessor.

10

in the secure coprocessor, or bypass the physical security around the remote server. If the
remote service is sufficiently complex, attackers will not be able to emulate it.

2.6. Previous Work
The secure coprocessor system model is much more sophisticated and comprehensive than
that found in previous work. It fully examines the natural security boundaries between sub-
systems in computers and how cryptographic techniques may be used to boost the security
within these subsystems. The systems of Best [8] and Kent [46] only considered the use
of encryption for copy-protection, and employed physical protection for the main CPU and
primary memory. White and Comerford [104] were the first to consider the use of a security
coprocessor, but their system were targeted for copy-protection and for providing crypto-
graphic services to the host. New to the secure coprocessor model is security bootstrapping
and crypto-paging, important techniques for building secure distributed systems.

11

12

Chapter 3

Applications

Because secure coprocessors can process secrets as well as store them, they can do much
more than just keep secrets confidential. I describe how to use secure coprocessors to
realize exemplar secure applications: (1) host integrity verification, (2) tamper-proof audit
trails, (3) copy protection, (4) electronic currency, and (5) secure postage meters. None of
these are possible on physically exposed systems. These applications are discussed briefly
below.

3.1. Host Integrity Check

Trojan horse software dates back to the 1960s, if not earlier. Bogus login programs are
among most common, though games and fake utilities were (and are) also widely used to
set up back doors as well. Computer viruses exacerbate the problem of host integrity
the system may easily be inadvertently corrupted during normal use.

In the rest of this section, I discuss how secure coprocessors addresses this problem,
discuss a few alternative solutions, and point out their drawbacks.

3.1.1. Host Integrity with Secure Coprocessors

Providing trust in the integrity of a computer's system software is not so difficult if we can
trust the integrity of the execution of a single program: we can bootstrap our trust in the
integrity of host software.7 If we are able to run a single trusted program on the system, we
can use that program to verify the integrity of the rest of the system.

Getting that first trusted program running is fraught with problems, even if we ignore
management and operational difficulties, especially for machines in open clusters or un-
locked offices. Running an initial trusted program becomes feasible when we add a secure
coprocessor - the secure coprocessor runs only trusted, unmodified software, and this
software uses cryptographic techniques to verify the integrity of the host software resident
on the host's disks.

7Bootstrapping security with secure coprocessors is completely different from the security kernels found
in the Trusted Computer Base (TCB) [101] approach: secure coprocessors use cryptographic techniques to
ensure the integrity of the rest of the system, and security kernels in a TCBs simply assume that the file store
returns trustworthy data.

13

